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TABLE I
COMPARISON OF THE NUMBER OF UNKNOWNS BETWEEN SIE’s AND VIE’s

SIE VIE
Square cylinder
with N samples 2
on each side 8N N
Cube with N 2 %
samples on 24N 3N
each side

graphic data, and by extrapolating bulk dosimetry trends through
analysis of many models and parameters similar to the afore-
mentioned one, it is believed that this analysis should constitute
a useful diagnostic tool for predicting microwave hazards.

IV. CoNCLUDING REMARKS
In this short paper the feasibility of using the SIE technique to
analyze the fields in arbitrarily shaped lossy dielectric cylinders
with a TM or TE incident plane wave has been demonstrated.
Generally, this method also applies for any arbitrarily shaped

penetrable cylinders composed of both dielectric and magnetic

material. Although the illuminating sources considered here are
TM and TE plane waves, for near zone sources such as direct
contacted aperture sources, corner reflectors, etc., this technique
still applies. For dielectric circular cylinders, good agreement is

btamed between the SIE solutions and the eigenfunction
expansion solutions. For a cylinder with arbitrary cross section,
however, the integral equation method, including both the. SIE
method of this short paper and the volume integral equation
(VIE) technique advocated in [6], [11] proves to be definitely
more advantageous.

A further breakdown of the comparable computer storage
requirement of the two integral equation methods is now in
order, since this dictates the maximum sampling rate and hence
body size which may be tractable. For conceptual simplicity
consider the homogeneous square cylinder and cube. Table 1
shows the relative number of unknowns, and thus the matrix
size, needed for each [16]. To assure that meaningful results are
obtained, i.e., sufficient sampling to accurately describe field
variations, N should be large. Thus the SIE can be seen to hold a
definite advantage (for N > 8). It should also be noted that the
same sampling rate is assumed for the VIE throughout the
interior. In cases where ¢, or ¢ are large, and wavelength becomes
contracted inside the body, a much larger number of samples
than that assumed here may actually be needed. If the body is
not homogeneous, however, i.e., many layered or even with
continuously varying ¢ and o, then the VIE approach should
prove to be more suitable. '

In order to aid in the determination of applicability, the major
advantages of each method are summarized here.

VIE Technique:

1) Applicable for arbitrary geometric configurations.
2) Avoids convergence problem of the eigenfunction series.
3) Useful for inhomogeneous bodies.

SIE Technique:

1) Less unknowns are required for homogeneous bodies.
2) Applicable for arbitrary geometric configurations.
3) Avoids convergence problem of the elgenfunctlon series.

Eigenfunction Expansion Technique:

1) Does not require the storage and inversion of a large
matrix. '
2) Requires much Iless computer time.
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In conclusion, the problem of predicting fields in arbitrary
cylinders of biological tissue has been successfully treated. By
the good agreement obtained and useful field contours found,
one may conclude that the numerical techniques employed here
are advantageous tools. This solution method has also been
successfully applied to three-dimensional bodies of revolution
[18] and will be presented in a later paper.
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Fig. 1. Radial field and power density distributions near the gyro resonance. (a) ©-5P9;7, Q = 0.495, Qfy = 40.842 (39.635),
[Ez(max)| = 0.581(0.581, |E(max)] = 0.636 X 10-1(0.617 x 10~1),|E,(max)| = 0.636 x 10-1(0.617 X 10~1),| H (max)| =
0.215 x 10~1, [H,(max)| = 0.310 (0.312), | Hg(max)| = 0.310 (0.312), | P,(max)| = 0.197 x 1071 (0.192 x 1071, (b) 0-3P%35 1,

Q = 0.495,0py = 84.395 (83.813), | E,(max)| = 0.580 (0.580), | E(max)| = 0.610 x 10~ (0.615 x 10~ 1), | E,(max)| = 0.612 X
10-2(0.616 x 10-1), [H.(max)| = 0.163 x 10‘01:%1,(max)| ='0.710 x 10-1(0.719 x 10~1), | H4(max)] = 0.715 x 10~1(0.717 X

10~1), |P,(max)] = 0.215 x 1072(0.215 x 1

resonant frequencies. Results of both the quasi-static and exact analyses
are presented. From the field distributions, the behavior of electrons at
each resonance is clearly explained.

1. INTRODUCTION

The dispersion characteristics of the dipolar modes in a partially
filled plasma waveguide have been extensively studied in an earlier
paper [1]. The purpose of the present short paper is to extend
our work by examining the radial field distributions, especially
near the resonant frequencies, ‘

The normalized parameters which characterize the plasma
are Q = w/w, and R = o,/w,, where , wp, and o, are the
angular wave, the plasma, and the gyro frequenciés, respectively.
The normalized waveguide radius is denoted by f = a,(a/c),
where a is the waveguide radius and ¢ is the velocity of light in
free space. The variation with the axial and azimuthal positions
and time is of the form exp {j(kz + n¢ — wt)}, where k is
the axial propagation constant and n +1 for dipolar modes.
The normalized propagation constant is y = k/k,, where k is
the propagation constant in free space. The radial propagation
constants in the plasma region are denoted by U; and U, in the
exact analysis and U is the electrostatic approximation, while
that in free space is denoted by U,. As before [1], the plasma
has been assumed collisionless.

The exact field solutions can be derived directly from the
Maxwell’s equations through the usual techniques [1]-[3]. In
the electrostatic approximation, the ac magnetic field is first
neglected, and the electric field is derived from a scalar potential -
[4]. However, to obtain the power density for the case at hand,
it is necessary to approximate the ac magnetic field from the
Maxwell’s equation, V x H = —jk,&+E. Subject to the
boundq;y condition, it can be shown that the longitudinal
compoﬁént of the ac magnetic field can always be zero. Hence
the field solutions lead to purely transverse magnetic (TM)
modes. In the exact analysis, it can be shown analytically that
the field solutions are also TM modes when y tends to infinity.

It is noted that the field and power density distributions plotted
are normalized with respect to their maximum magnitude inside
the plasma region, i.e., 0 < r/a < 0.5, which is also indicated
for reference. The results of the electrostatic approximation are
written inside a bracket beside the exact results. For comparison,
both results are presented in the same figure with the solid and
the broken lines for the exact and electrostatic analysis,
respectively.

II. NUMERICAL RESULTS AND DISCUSSIONS

For the sake of brevity, the detailed expressions for the field
components E,, E,, and E, inside and outside the plasma region
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Fig: 2. Radial field and power density distributions near the gyro resonant frequency. (a) 5C9
, |Eg(max)] = 0.8348, |H(max)| = 1.367, | H (max)|

5 0 = 5.002, Qfy = ,

0~1|H (max)] = 0.4494, | H4(max)| = 0.4494, | P,(max)| = 0.2391 x 10~1.

[E.(max)| = 0.3740, |E(max)| = 0.846
Pa(max)| = 0.9622" x '10~1. (b) 0-5C0

E,(max)| = 0.5332 x 101, |H(max)] = 0.485 x 1

in both the electrostatic and exact analyses are not given here,
but can be found in [5, ch. 3, 4].

Fig. 1(a) and (b) represents the field and power density
distributions at an operating point on the dispersion curves for
the plasma modes ®{P{:} and °7P2%,, respectively. In the
notation §P9,, P represents the plasma modes, R,fn are as
defined before, S; = b/a is the ratio of the plasma column and
waveguide radii, and m is the mode order. This operating point
is in the gyro resonance region and near the gyro resonant
frequency. The agreement between the two results is observed
except for E, and P, in the free-space region. Since H, is very
small compared with the other components, hence the prediction
that H, vanishes in the electrostatic approximation is verified.
The waves are therefore transverse magnetic, On the axis of the
plasma column, the transverse components of the electric field
demoristrate the right-hand, ie., E, = — JE4, and the left-hand,
i.e., E, = +jE, circular polarization for = 1 and n = —1,
respectively. The circularly polarized nature of the waves
increases as § tends to R. However, the operating points used
by Bevc [2] are not near the resonant frequencies, i.e., y is small.
The circularly polarized waves causé the electrons to gyrate
about the dc magnetic field line. The power density is positive,
so the power flows in the same direction of wave propagation.
Hence the wave is forward. The maximum magnitude of P,
is so small that the power flow can be considered as almost

-5, Q = 5.002, Qfy = 2.273145,
= 0.4984, |H ,(max)] = 0.4985,
57.63752, |Emax)| = 0.5811,] E(mdx)| = 0.6261 x 1071,

vanishing. The energy carried by the waves is transferred to the
kinetic energy of the electrons, resulting in the maximum gyration
of the electrons at the gyro resonance frequency Q. = R.

To see the circularly polarized nature of the waves more
clearly for small values of y as Q approaches R, the field and
power distributions for the % C{+3 (C stands for cyclotron modes)
at Q = 5.002, Qfy = 2273145 [1, fig. 6(c)] are presented in
Fig. 2(a), where |E,| ~ |E,| in the plasma region. Since the
operating point is far away from the resonance condition
(y » o), there is an appreciable amount of positive power
carried in the circularly polarized waves, showing the forward
nature of the waves. As the resonance condition is approached,
e.g., 780 = 57.63752 as in Fig. 2(b), it is seen that power flow
becomes extremely small, and the electric field exhibits circular
polarization only on the axis because by now most of the wave
energy has been converted into the gyrations of the electrons.
The group velocity approaches zero [1, fig. 6(c)]. Nevertheless,
the magnetic field still exhibits citcular polarization inside the
plasma. All the aforementioned observations have been checked
analyticaily, using the field expressions given earlier.

Fig. 3(a) and (b) represents the field and power density dis-
tributions at an operating point on the dispersion curves for the
cyclotron modes, °1C{:§ and °;>C%{ |, respectively. The agree-
ment between the two results is still observed for the electric
field and the power density. It is obvious that the magnetic
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Fig. 4 (Continued).

fields are so small that they can be neglected with respect to the
electric fields. This fact is also verified analytically. The fields are
therefore electrostatic as assumed in the electrostatic approxi-
mation. The longitudinal component of the electric field is much
stronger than the other ones. This field is associated with the
electron oscillation along the dc magnetic field lines. The
maximum magnitude of P, is again so small that power flow can
be considered as vanishing. The energy carried by the waves is
transferred to the kinetic energy of electrons to support their
longitudinal oscillations at the plasma resonance frequency
Q. = 1. The total power flow is negative. Hence the wave is
backward.

Fig. 4(a) and (b) represents the field and power density dis-
tributions at an operating point on the dispersion curves for the
surface-wave modes %;589° and °35%7, respectively. This
operating point is in the surface-wave region, i.e., U;, U,, and
U are imaginary, and near the surface-wave resonance frequency.
It can be seen that the agreement of the two results is better in
Fig. 4(b) where n = —1 than in Fig. 4(a) where n = 1. This
fact has also been observed in the dispersion characteristics [1].
In both figures the field components have their highest values at
the plasma-air interface and decrease rapidly from the interface.
This field behavior is characteristic of surface waves. The trans-
verse electric field excites the transverse oscillation of the electrons.
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The power density also has the highest values at the interface.
So the energy carried by the wave is concentrated near the inter-
face. This wave is therefore called the surface wave. The power
densities inside and outside the plasma column are in opposite
directions. The areas under these curves add to almost zero,
leading to the conclusion that the total power flow also vanishes.
The wave energy is transferred to the kinetic energy of the
electrons to support the transverse oscillation of the electrons
at the surface-wave resonarice frequency Q. = (Qy /\/ 2).

Fig. 4(c) and (d) respresents the field and power density
distributions at an operating point on the dispersion curves for
the surface-wave modes ;3595 and *;55%3. As pointed out
previously [1], these surface-wave modes undergo some funda-
mental change. The operating point on ;3595 and that on
1:589%:3 are near the cyclotron and the plasma resonance fre-
quencies, respectively. In Fig. 4(c) similar results are obtained
for the electric fields as discussed previously in Fig. 1(a). How-
ever, the magnetic fields are seen to be in opposite directions.
The total power flow is negative. Hence the wave is backward.,
The same results are also seen for the field and power density
distributions at an operating point on the dispersion curves for
the cyclotron modes, *°C%? ,, so these results are not presented
here. In Fig. 4(d) the agreement of the two results is only seen
in the electric field and power density. The discrepancies in the
magnetic fields are clearly observed. However, they do not
cause any severe error in the overall results because the mag-
nitudes of the magnetic fields are so small that they can be neg-
lected with respect to the electric field. The power density is
positive, so the wave is forward. Similar results are also seen of
the field and power density distributions for the plasma modes,
1:5P%7 1, so these results are not presented here.

In all the figures it is clear that E, is always discontinuous at
the plasma-air interface. This can be explained by the fact that a
surface-charge layer exists on the interface due to the different
mobilities of ions and electrons [3]. In the electrostatic results,
it is seen that H,,H, are usually discontinuous because they have

not been subjected to the boundary conditions, but are only
approximated by using the Maxwell’s equation as indicated
previously. However, the results obtained for the power density
still agree with the exact ones.

III. CoNCLUSIONS

From the preceding discussion, it can be summarized that
near the plasma resonance frequency the fields are static. How-

~ ever, near the cyclotron and the surface-wave frequency, the

waves are characterized by TM modes, i.e., H, ~ 0, in which
the transverse components are much stronger. As R increases
beyond 1, the surface waves, i.e., 8S5°, undergo some fundamental

change. They become bulk waves for large y. Near the plasma

resonance, the ’;SS_" 1 waves behave like the plasma modes. Near
the cyclotron resonance, the ‘;Si° waves behave like the cyclotron
modes. This latter aspect has been discussed previously in
connection with the dispersion characteristics [1].

The results obtained by assuming collisionless plasma are also
valid for the cold plasma used in the laboratory because plasma
and surface-wave modes have already been verified in the lab-
oratory by several investigators [6]-[8].
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